Vous êtes ici : Accueil > Actualités > Accélérer des électrons à haute énergie avec des impulsions de lumière laser

Résultat scientifique | Laser | Physique des particules

Accélérer des électrons à haute énergie avec des impulsions de lumière laser


​Deux équipes du CEA LIDYL et du Laboratoire d'Optique Appliquée (LOA) ont réussi à mettre en évidence pour la première fois l'accélération d'électrons "dans le vide", par un faisceau laser intense. Cette observation montre qu'il est possible de profiter des très fortes amplitudes de champ électrique des impulsions de lumière laser femtoseconde, que l'on sait aujourd'hui produire, pour accélérer des particules à haute énergie sur de faibles distances.

Publié le 22 décembre 2015

​En concentrant la lumière sur des durées femtosecondes (10-15 s), les impulsions laser peuvent atteindre des puissances lumineuses instantanées considérables (~ 1 PW, soit 1015 W) et donc des amplitudes extrêmement élevées du champ électrique associé (~ 10 TéraV/m, soit 1013 V/m). Comme les vagues en haute mer ne peuvent faire avancer les navires, ce champ, par nature oscillant, ne peut accélérer à de très hautes énergies des particules chargées. Mais comme le surfeur qui va chercher la vague et en avançant avec elle peut continûment profiter de sa pente, l'injection d'électrons relativistes (avec une vitesse très proche de celle de la lumière) dans le faisceau laser peut théoriquement permettre l'accélération recherchée, en profitant pleinement des champs électriques gigantesques associés aux impulsions laser ultracourtes.


De nombreuses équipes de par le monde ont essayé de mettre en évidence ce phénomène, sans pouvoir en apporter la preuve définitive. Cette accélération "dans le vide" de particules chargées par un champ laser intense vient d'être expérimentalement démontrée par une collaboration entre une équipe du CEA-IRAMIS et le Laboratoire d’Optique Appliquée (ENSTA-X-CNRS) à Palaiseau. L'interaction de l'impulsion laser avec une cible solide (miroir plasma) permet d'obtenir l'injection idéale d'électrons qui, surfant sur l'impulsion laser, atteignent des énergies de l'ordre de 10 MeV sur une distance de 80 µm. Cette première ouvre ainsi la perspective d’utiliser de la lumière intense pour réaliser des accélérateurs compacts d'électrons de très haute énergie.

Profil du faisceau d'électrons issu du miroir plasma. Les couleurs reflètent le nombre d'électrons émis dans une direction donnée. Déviés du fait de l'accélération de 1.5 MeV à 10 MeV sur une distance de 80 µm par l'impulsion laser, le faisceau d'électrons de haute énergie est bien visible au centre de la figure (tache rouge), tandis que peu d'électrons sont émis dans la direction du faisceau lumineux réfléchi (tache blanche). © © F. Quéré - J. Faure, CEA-CNRS.



Haut de page

Haut de page